
Your Causality is Secretly a Reward Guidance

Boyuan Chen
Yuanpei College

Peking University

Abstract

In this paper, we investigate the role of causality in addressing the distribution
shift problem in AI systems. We examine how different AI architectures, including
neural networks, deep reinforcement learning (DRL) systems, and large language
models (LLMs), struggle with causal transfer, which is crucial for generalizing
across diverse tasks and environments. We propose a novel alignment paradigm
that integrates causality as a reward guidance mechanism, allowing models to learn
more robust causal structures. By leveraging causal reasoning and counterfactual
thinking, our approach aims to mitigate issues related to goal misgeneralization and
improve the generalization of AI systems. The causality-driven approach has the
potential to enhance the safety and scalablity of AI agents in real-world scenarios.

1 Introduction

Picture a person who lacks any comprehension of causal knowledge or the concept of cause and
effect. This individual would be like the prisoners in Plato’s Allegory of the Cave, only capable
of seeing the fleeting shadows on the wall, without the ability to grasp the underlying reality that
shapes these illusions. When discussing general intelligence, a common debate revolves around the
idea that AI lacks causal reasoning, which limits its ability to effectively manage a wide range of
environments and tasks. Recent research has demonstrated that agents must learn causal models
in order to generalize effectively to new domains, rather than relying solely on inductive biases
[5]. The process of learning environmental causality within specific tasks and then generalizing to
others—whether those environments share the same causal structure or not—can be referred to as
causal transfer [8].

Can we develop a robust alignment method to achieve unified causal transfer?

In this paper, we review the relationship between causality and distribution shift (Section 2), examine
the challenges of causal transfer (Section 3), and broaden the scope from causal bayesian networks
(CBN) to deep reinforcement learning (DRL) systems and even current large language models
(LLMs). We aim to propose a new alignment paradigm that leverages causality as a supplementary
reward model (Section 4).

2 Revisiting Causality

In computer vision (CV), research has long highlighted that unobservable factors in a scene, such as
physical laws and causal relationships, profoundly influence the development of intelligence. Among
these, causality is particularly significant, as it goes beyond mere sensory processing and engages
higher-order cognitive functions like reasoning, prediction, and counterfactual thinking. For instance,
causal perception can be contrasted with color perception from a neuroscience perspective:

• Similar to color perception, causal relationships (e.g., one object striking another) can be directly
perceived without conscious effort. For example, we intuitively see a billiard ball hitting another
and causing it to move [6]. However, causal perception extends into abstract understanding,
which color perception does not.
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• Additionally, causal perception involves counterfactual reasoning—inferring what would happen
if conditions were different. For instance, when seeing a ball stop at a gate, we not only recognize
the cause (an obstacle) but also imagine how the outcome might change if the obstacle were
removed. This level of cognitive reasoning is unnecessary in color perception.

Simultaneously, increasing efforts have focused on identifying invariants across different training
distributions to make models more robust to distribution shift—a scenario where AI systems perform
well within the training distribution but fail to generalize in out-of-distribution (OOD) environments
[2]. In such cases, AI may end up pursuing goals misaligned with human intentions.

The primary reason for distribution shift is that models do not learn an adequate causal structure,
leading them to rely on shortcut features and fall into learning loopholes. For example, in an image
classification dataset, if cows frequently appear in grassy fields, the model might wrongly learn
that green grass is a highly predictive feature for the label "cow." This happens due to insufficient
data distribution, where ambiguous cause-effect relationships result in the model’s learning process
breaking down.

Distribution shift is not limited to a specific type of system; it is a widespread issue across various
AI systems, including neural networks, RL systems, and LLM). This pervasive challenge makes
achieving causal transfer significantly more difficult.

3 Challenges of Causal Transfer

As discussed in the previous section, distribution shift occurs across various systems. Now we focus
on the expected performance of causal transfer and the associated challenges in different systems.

3.1 Neural Networks

This part discusses basic neural networks, which are mainly used for tasks like prediction and
classification through function fitting. The aim of causal transfer is to enable the trained model to
make accurate predictions or classifications on OOD data points. However, during training, it is often
challenging to distinguish between causality and correlation, causing models to learn misleading
associations.

Figure 1: Correlation does not imply causation. (a) Ice cream production is strongly associated with deaths by
drowning. Ice cream production data comes from the US Department of Agriculture’s National Agricultural
Statistics Service, and drowning data is from the National Center for Health Statistics at the US Centers for
Disease Control and Prevention. (b) Smoking is strongly associated with lung cancer, based on data from
ourworldindata.org/smoking-big-problem-in-brief.

As shown in Figure 1, although there is a strong correlation between ice cream production and
drowning deaths, it is clear that ice cream production does not cause drowning. The root of such
mistaken assumptions lies in the causal structure. For instance, when multiple variables contribute
to an outcome, selection bias often occurs, where focusing only on the shared outcome can lead to
incorrect conclusions about the relationships between variables.
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3.2 DRL Systems

In DRL systems, causal transfer often refers to the expectation that agents can switch between
different tasks. However, in practice, reward specifications often have loopholes, leading to the
risk that the behaviors learned by the system might exploit these rewards, which makes it difficult
for the system to generalize effectively in real-world scenarios. Furthermore, even when reward
specifications are perfect, the environment’s ambiguity can lead to mis-generalization [7].

Imagine an autonomous drone trained to deliver packages. During training, it learns to optimize
flight routes to minimize energy usage. However, in real-world deployments, if the environment
changes due to unexpected obstacles or different weather conditions, the drone might misgeneralize
and prioritize energy savings over safety, choosing routes that lead to risky situations like flying
through dangerous weather. This misgeneralization, even without reward misspecification, can lead to
hazardous outcomes, highlighting the challenge of ensuring safe generalization in diverse real-world
settings.

3.3 LLMs

As LLMs become more powerful, there is growing optimism that they can serve as agents capable of
performing complex tasks, including tool use, skill acquisition, and long-term planning. However,
due to the disparity between simulated and real-world environments, as well as LLMs’ limited
understanding of physical laws, they currently struggle with effective tool use.

Achieving causal transfer requires the integration of causality into the system’s interactions with its
environment.

One possible approach is to learn a causal encoding of the environment. Causal knowledge inherently
provides a transferable representation of the world [3, 4]. However, a major challenge is scaling up
causal structures, model sizes, and data volume to improve transferability.

4 Utilizing Causality as a Reward Guidance

This section focuses on large language models and aims to address the challenges outlined in Section
3 by introducing a new paradigm that integrates DRL with causal reasoning. A crucial element of
causal reasoning is counterfactual thinking, which allows the exploration of individual-level causal
questions, such as whether an outcome would differ if a past event had not occurred. One simple
approach is to fine-tune large language models with datasets designed for counterfactual reasoning,
thereby introducing a degree of causality into the models. However, this method is constrained by the
strength of the link between the data and the causal reasoning chain, including counterfactual logic.

Inspired by causal theory, we can model causality as a constraint condition. During the optimization
process, causal constraints can be introduced to ensure the model only generates inferences that align
with causal logic. For example, in the policy update process of a RL system, a loss function related to
causal reasoning can be added to ensure that the policy optimizes not only short-term rewards but
also causal coherence.

Furthermore, this approach can draw on common ideas from Safe Reinforcement Learning by in-
troducing a cost Model that works alongside the reward Model to jointly optimize rewards. The
effectiveness of this method has been demonstrated by SafeRLHF [1]. When causality is indepen-
dently trained as a cost Model, universal principles can be introduced during training to develop a
task-agnostic unified cost model.

5 Conclusion

In this paper, we explored the relationship between causality and AI systems, emphasizing the
challenges posed by distribution shift and the limitations of current models in handling causal transfer.
By analyzing neural networks, DRL systems, and LLMs, we highlighted the common issue of
misgeneralization due to insufficient causal understanding. Our proposed approach integrates causal
reasoning as a supplementary reward model to address these challenges, enabling AI systems to
generalize more effectively across diverse environments. This paradigm has the potential to improve
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not only task-specific performance but also the overall safety and robustness of AI agents in real-
world applications. Future research should further investigate the scalability of causal models and the
integration of counterfactual reasoning to enhance causal transfer across varying domains and tasks.
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