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Abstract

In this paper, we explore methodologies for constructing intentionality in AI
agents, focusing on object-directed and socio-technical goals. Through Bayesian
networks and reinforcement learning, simple agents can be designed to follow
both immediate and long-term objectives. Complex agents, meanwhile, require
socio-technical goal construction that incorporates social values and multi-agent
interactions, often achieved through preference-based models and game-theoretic
approaches. Despite recent advances, significant challenges remain, particularly
around goal misgeneralization and power-seeking tendencies that may emerge
due to misaligned optimization processes. Our work discusses potential risks and
suggests pathways, including cooperative inverse reinforcement learning, to enable
safer and more effective alignment of AI agents with human intentions in diverse
and dynamic settings.

1 Introduction

We live in a world filled with goal-directed agents. Values shape these goals, e.g., water flows downhill
to minimize potential energy, and intelligent agents form intentions to achieve higher rewards. In
human society, values and intentions play a crucial role, particularly in social interactions beyond the
physical realm. Humans need to develop their own intentions and infer those of others to interpret
behavior in a social context. As causal agents, people dedicate their limited time and resources to
actions that align the world with their intentions and desires. They pursue their goals rationally,
aiming to maximize utility and minimize costs based on their understanding of the world, which
known as the rationality principle [10, 11, 17].

Numerous studies have explored methods for intention construction and inference. For example,
handcrafted reward functions have been used to set training objectives for RL agents [9], and Bayesian
networks have been applied to model relationships between goals and actions [4, 3, 2] to aid social
agents in goal inference. Research on intentionality is crucial for developing causal agents and
facilitating AI agents’ integration into social interactions.

Goals can be either long-term or immediate, and may relate to both social and technical aspects. They
can also be abstract (e.g., helpfulness) and therefore difficult to define with a specific function, posing
challenges for intentionality construction. In this paper, we focus on intentionality construction from
two perspectives [21]:

• Creating simple agents with object-directed goals that do not consider the goals of other agents
(Section 2). The key in this case is constructing both immediate and long-term goals, potentially
spanning years.

• Developing complex agents with either social or object-directed goals that take into account the
goals and likely behaviors of other agents (Section 3). Here, the main challenge is constructing
abstract goals related to social values, enabling the intentionality construction method to generalize
and scale for human-AI interactions.
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Finally, we discuss potential issues with intentionality construction, such as goal misspecification [16],
which could lead to goal misgeneralization or even power-seeking behaviors [18] during subsequent
optimization (Section 4).

2 Object-directed Goals Construction of Simple Agents

To enable agents to accomplish specific tasks, we typically define a set of goals, which can be modeled
directly through logical relationships, represented with a Bayesian Network (BN) to capture causal
dependencies, or expressed through a reward function.

2.1 Bayesian Networks for Intent Construction

Bayesian Networks (BNs) have seen extensive application in inverse planning tasks [24], where their
strength in capturing probabilistic dependencies and causal relationships enhances their utility for
intent recognition across various settings. By modeling the likelihood of different intentions based on
observed actions, BNs allow for a nuanced understanding of underlying goals and motives [23]. This
probabilistic approach facilitates the mapping of visible behaviors to inferred intentions, making BNs
invaluable for scenarios where interpreting intent accurately is crucial.

These methodologies have also proven effective in the realm of video modeling. In particular, inverse
planning on RGB-D videos, which capture both color and depth information, enables a hierarchical
interpretation of human actions. The multi-layered approach not only captures observable actions
but also aligns them with inferred decision-making and planning processes, offering insights into the
layered nature of intentions behind actions [20, 14]. By structuring human intent within such hierar-
chies, BNs bridge observed behaviors with probable intentions, facilitating a more comprehensive
understanding of the human action-planning continuum.

However, BNs have certain limitations. They can struggle with scalability in high-dimensional or
complex environments, as the computational cost of inference increases with the number of variables.
Additionally, BNs rely heavily on accurate prior knowledge of causal structures, which may not
always be available in dynamic or uncertain contexts. Furthermore, while BNs can model static
causal dependencies effectively, they can be less suited for modeling sequential dependencies in
continuously evolving scenarios.

2.2 Reinforcement Learning for Goal Specification

Another commonly used approach for goal specification is reinforcement learning (RL), where reward
functions are designed to encourage desired behaviors from the model and penalize undesirable ones.
Early efforts in reward function design were typically handcrafted [9]. In these scenarios, such as the
frozen lake environment [6], goal-oriented behaviors like finding the exit can be guided effectively
through simple positive and negative reward values. In essence, these environment rewards help
agents model the environment’s characteristics and learn how to explore and utilize it to achieve
specified goals. Setting these environmental rewards thus serves as a means for human supervisors to
communicate goal specifications to the agents.

The advent of deep neural networks has accelerated the application of reinforcement learning but
has also introduced new challenges. For complex RL agents, we might want them to acquire specific
human-like behaviors, such as opening and closing doors. However, these tasks can be multifaceted
and have numerous pathways, making handcrafted reward functions insufficient to capture their
complexity. Imitation learning offers a solution [1, 8] by enabling agents to learn directly from expert
trajectories or behavior examples. By fine-tuning on these examples, the model’s parameters can
embody specific goals as modeled through these trajectories and behaviors.

Imitation learning is not the optimal solution, as human-provided demonstration data can be costly and
difficult to collect. Moreover, not all tasks are feasible for human demonstration, such as autonomous
drone control or robotic manipulation. To address these limitations, inverse reward design [13]
attempts to construct goal specifications by reverse-engineering reward functions from existing
trajectories, allowing the agent to infer and pursue goals based on observed behaviors. This approach
shares a conceptual similarity with inverse planning tasks used for intent inference.
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Preference-based RL also tackles these challenges by incorporating humans in the outer loop. Rather
than providing demonstrations, humans merely rate the agent’s behaviors. This feedback is then used
to train a preference-based reward model that reflects human intent, highlighting what constitutes
effective operational behavior [22].

Despite the effectiveness of RL methods for relatively simple agents, challenges remain, particularly
regarding how to model abstract human values that go beyond immediate task-specific rewards.
For instance, while simple reward functions may suffice for straightforward tasks, representing
higher-order human values or complex ethical considerations within RL frameworks is still an open
question.

2.3 Long-Term Goals Construction

The discussion above highlights that immediate goals are relatively straightforward to model. However,
when goals extend to long-term horizons, it becomes particularly important to ensure that the model
can accurately represent these long-term objectives and maintain their influence over time without
diminishing as the time horizon increases.

Hierarchical Reinforcement Learning (HRL) [5] aim to address this issue by decomposing complex
tasks into a hierarchy of sub-goals. This approach enables the model to pursue a high-level overarching
goal by achieving finer-grained, intermediate objectives that collectively contribute to the realization
of the broader goal. This concept mirrors human intentions, where we often define a macro-level goal
accompanied by micro-level tasks that guide us step-by-step towards achieving it.

The construction of long-term goals is critical for planning tasks. However, there is still considerable
debate over whether long-term goals need to be explicitly represented. For instance, individuals may
struggle to clearly define their ten-year goals due to the inherent uncertainties of the future. Similarly,
human experts, such as chess players, may not plan every move ten steps ahead; instead, they often
rely on evaluating the current state of the board to make strategic decisions. This insight encourages
us to examine the relationship between long-term goal construction and abstract reasoning. Through
abstraction, past experiences can inform future planning, a process that offers valuable insights into
building intentionality in agents. Since abstraction serves as a foundation for intelligent behavior
and long-horizon reasoning, it forms a crucial basis for constructing intentional, long-term planning
capabilities in intelligent agents.

3 Social-techinical Goals Construction of Complex Agents

Constructing goals for single-agent systems is relatively straightforward. However, when the problem
extends to multi-agent scenarios, the complexity of intentions significantly increases. In these settings,
agents are expected to account for the goals and anticipated behaviors of other agents. The primary
challenge here is to construct abstract goals that encompass social values, thereby enabling the
intentionality framework to generalize and scale effectively for human-AI interactions.

Modeling social and moral values presents particular difficulties, as it is challenging to find a precise
computational representation for complex human values, such as fairness and justice. One compromise
is to approximate human intentions by modeling their projection through human preferences. For
example, a human supervisor may favor actions that are helpful or safe. Such preferences can be
represented through preference-based models like the Bradley-Terry Model [15] or the Luce-Shepard
Model, which are commonly used to model binary preferences or rank-order relations. This approach
is widely employed in aligning large language models [19]. While effective to an extent, this approach
is constrained by data quality and the risk of misgeneralization in preference models, potentially
leading to goals that are misaligned or biased [7].

To further explore social values within multi-agent scenarios, we can reframe the problem using a
game-theoretic perspective, examining two fundamental cases: cooperation and antagonism. Consider
agents A and B; in a cooperative scenario, A’s utility function includes B’s welfare, and A aims to
maximize B’s benefit. In contrast, antagonism implies the opposite. By incorporating this structure into
a bayesian network [21], we can model agents that act approximately rationally, given environmental
constraints and their understanding of the intentions of other agents.

3



However, such modeling approaches have limitations. They often struggle to capture the nuances
of fluctuating social contexts and may oversimplify complex interpersonal dynamics, reducing the
reliability of the inferred intentions in highly variable multi-agent environments.

4 Disucssion

In the above analysis, we examined computational frameworks for constructing both object-directed
and socio-technical goals. However, as Goodhart’s Law warns, when means are mistaken for ends, the
original objective is often compromised. As intentions grow more complex, precisely modeling them
becomes increasingly difficult. Some objective functions may fail to account for spurious features,
which agents could exploit as loopholes, leading to undesirable goal generalization in new contexts,
even if the goals seem appropriate within human-observed environments.

Such goal misgeneralization, often due to distributional shifts, can result in policies that advance high-
level but unintended objectives in new settings. Moreover, models may generalize to broadly-scoped
goals that produce unintended consequences, especially with longer time horizons or unfamiliar
tasks. For instance, a large language model might overextend following instructions to behaviors
unforeseen by developers. This risk is exacerbated by simplicity bias in training algorithms, which
may favor generalized, less context-specific goals (like obedience) over specific, bounded ones.
Misgeneralization of broadly-scoped goals can drive models toward actions misaligned with intended
outcomes—potentially even leading to shortcut-seeking behaviors—particularly in complex tasks
like scientific research or organizational management, where oversight is challenging and the impacts
are significant.

Mispecified goals may also be amplified under RL optimization, where the model’s objective is to
maximize rewards. This drive can lead models to "overachieve" or pursue goals at any cost, potentially
resulting in aggressive strategies like resource exploitation or attempts to gain control. One approach
to address this issue is to avoid rigid goal-setting and instead foster human-AI collaboration, where
the AI seeks to model and advance human objectives dynamically. This is the essence of cooperative
inverse reinforcement learning [12], which enables AI systems to align closely with human intentions
by continuously adapting to human feedback, thereby reducing the risk of undesirable or extreme
goal pursuit.

5 Conclusion

Our study underscores the nuanced challenges of constructing intentionality in AI agents, particularly
as their roles extend into social and multi-agent contexts. Simple goal models can be implemented
using Bayesian networks and reinforcement learning, but these methods face limitations in scaling to
abstract human values and social interactions. Complex agents, designed to engage in socio-technical
tasks, require flexible models that consider the goals and likely behaviors of other agents. However, as
demonstrated, goal misgeneralization remains a critical risk, where agents might exploit optimization
shortcuts, resulting in behaviors that deviate from human-aligned objectives. To mitigate these risks,
we emphasize adaptive frameworks like cooperative inverse reinforcement learning, which can
incorporate ongoing human feedback to dynamically align AI behaviors with intended human goals,
thereby enhancing the reliability of agent behavior in complex environments.
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